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.Abstract 

"ON SOLVING BI-CRITERION MATHIMATICAL PROOTAMS" 

Arthur M. Geoffrion 

Western Management Science Institute 

University of California, Los Angeles, California   90024 

It often happens in applications of mathematical programming that 

there are two incommensurate objective functions to be extremJ zed, rather 

than Just one.    One thus encounters bi-criterion programs of the form 

Maximize     hCf^x),  f2(x)), 
x e X 

where    !!(•,•) is a (nonlinear) increasing utility indicator function 

defined on the possible pairs of outcomes of the concave objective functions 

f,    and    fp,    and   x   is a decision n-vector constrained to the couvex 

set   X.    In this paper it is fhown how such programs can be numerically 

solved if a parametric programming algorithm is available for the parametric 

sub-prob lern 

Maximize     ot f^x) + (l-cv) f2(x) ,    0 < cv < 1. 
x e X 

Thus when the parametric sub-problem is a parametric linear program, for 

example,  the nonlinear (and perhaps even non-concave) bi-crlterion 

program can be solved by a modification of a stock parametric linear 

programming routine.    An inherent advantage of the present approach is that 

it yields as a by-product a relevant portion of the "tradeoff curve"   between 

f..    and    f2.    When   h   is quasiconcave,   as is usually the case,  it is shown 

that certain computational economies are possible.    Outlines of six algorithms 

for solving (l) under various special assumptions are presented to illustrate 

the application of the theory developed herein.    They are based on parametric 
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linear programming, Wolfe's method of parametric quadratic programming, 

and Geoffrion's method of parametric concave programming.    Finally,  two 

extensions are indicated:    one designed to relax the convention that 

h    must be increasing in each of its arguments rather than decreasing in 

one or both,  and the other to permit nonlinear scale changes to be made on 

the    f.    for convenience in solving the parcmetric sub-problem.    These 

extensions greatly extend the domain of applicability and efficiency of 

the present approach. 

— a»'. I 



ON SOLVING BI--CRITERION MATHE-IATICAL PROGRAMS 

In this paper we study bi-criterion programming problems of the form 

(l) Maximize     h(f,(x),        i'2{x)) 
x e x 

vhere f. and fp are real-valued concave (see footnote l) criterion 

(payoff) functions of the n-vector x of decision variables that are 

constrained to lie In a convex subset  X of E , and h is a real- 

valued increasing (i.e., monotone non-decreasing in each argument) ordinal 

utility indicator function defined on the pairs of achievable values for 

f, and fp. We present a method for solving (l) based on any known para- 

metric programming algorithm for the parametric s,v-problem 

(P a) Maximize  a f (x) + (l-a) f2(x) , 
x e X 

where the parameter <*   varies over the unit interval. When f, and f^ 

are linear and X is a convex polyhedron, for example, (l) is reduced 

essentially to a standard parametric linear program even though h is 

nonlinear. Thus parametric linear programming routines can be modified to 

solve this important class of nonlinear (even non-concave) programs. When 

h is also known to be quasiconcave (i.e., there is a diminishing marginal 

rate of substitution between f1 and fp), a property shared by most 

utility indicator functions arising in practice, it is shown how to sub- 

stantially reduce the amount of computational work necessary to solve (l). 

After the necessary theory is developed, it is used to construct outlines 

of six algorithms for solving (l) under various assumptions on f.., fp, 

and X . Two are based on parametric linear programming [5], two on 

Wolfe's method of parametric quadratic programming [l3], and two on 

Geoffrlon'o method of parainetric concave programming [6]. Finally, two 

extensions are presented: one designed to relax the convention that h 

must be increasing in each of its arguments rather than decreasing in one 

or both, and the other to permit nonlinear changes of scale to be made 
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on the    f.    so as to facilitate solving    (Pa)'    These extensions 

enlarge the domain of successful applicability of the present approach,  and 

lead to efficient computational algorithms for a large class of mathematical 

programs thti+ can be written in the form of (l) (e.g.  linear fractional 

programs   [7,8],  target assignment problems   [ll],  and stochastic programs [lO]). 

Motivation 

Although bi-criterion programs may be motivated in terms of consumer 

demand theory of classical economic analysis,  the author's interest derives 

from a concern for an underdeveloped aspect of modern mathematical pro- 

gramming   •    how to deal with multiple objective (criterion) functions.    In 

practical applications of linear and nonlinear programming, alternative 

decisions very often have effects that cannot be naturally measured on a 

common scale.    Consider two such effects,   as represented by the criterion 

functions    f,(x)    and    fp(x),    and let it be desired to maximize both in 

the sense that,  for a fixed level of one,  as much as possible of the other 

is desired.    Unless    f     and    f_   happen to attain their maximum simultaneously 

on    X ,  some compromise between the two criteria must be worked out.    F?ve 

ways of proceeding are:    (i)    ignore one criterion and maximize the other" 

(ii)    maximize one criterion subject to the additional constraint that the 

other meet or exceed some specified minimal level-   (iii)    maximize a 

weighted combination of the two criteria (without loss of generality,  the 

result is a problem of the form {?a)    for some fixed    a    in the unit 

interval-  this amounts to forcing one criterioi. to be measured additively 

in the same units as the other)    (iv)    determine a preference ordering over 

the attainable payoff set,  represent it by a (usually nonlinear) utility 

indicator function    h(f,,fp),   and solve (l)r  and (v) construct the 
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admissible portion of the attainable payoff set,  decide which point in 

it is most preferred,  and determine a corresponding element of   X .    The 

attainable payoff set is  the set of points    (f (x),fp(x))    in E      corresponding 

to some    x    in   X ,  and the admissible portion of it (briefly,  the  "admissible 

set") consists of those points with the property that one criterion cai   be 

increased only at the expense of a decrease in the other. 

Procedures (i),   (ii)  and (lii) are computationally the simplest, 

though often they lead to unrealistic reformulations of the original problem. 

The fourth approach can be considered a generalization of the third,   and 

has the potential of being quite realistic.     It suffers, however,   from 

difficulties  introduced by the function   h  .    Not only must   h   be determined, 

presumably by prolonged  introspection, but its composition with    f.     and 

fp    can lead to a difficult maximization problem.    Assuming that a 

computational method is  available for constructing the admissible set 

procedure, (v) obviates  the need for determining a preference ordering 

over the entire attainable payoff set -- for it is only necessary to 

determine the most preferred point of the actual admissible portion 

thereof arising in the context of a specific problem.    An important side 

benefit,  not automatically available under any of the other procedures,  is 

full knowledge of the sensitivity of each criterion to the pursuit of the 

other.    Fortunately,   in a number of Important cases the amount of comp- 

utational work Involved  in computing the admissible set is not much greater 

than that for (ill). 

We shall develop and exploit the intimate relationship between  (ill), 

(iv),  and  (v) and the availability of parametric programming algorithms  for 

(P^) to derive a solution technique for (iv) based on computing a (usually 

small) part of the admissible portion of the attainable payoff set.     In 



addition to providing a convenient computational approach,  this method 

for solving (l) has,  of course, the inherent advantage of yielding as a 

by-product a relevant portion of the admissible set.    This suggests the 

following hybrid approach:    make a rough determination of    h      (preferably 

having a simple analytic  form),  solve the resulting problem (l),  and 

examine the by-product portion of the admissible set to see whether it 

provides any reason to doubt that the indicated solution is in fact the 

most preferred --if so,  then more of the admissible cet can be computed and 

a revised solution chosen in the spirit of (v). 

DEVELOIMENT 

In addition to the assumptions stated in the first paragraph,  it 

will be convenient to avoid questions of the attainment of suprema by 

assuming throughout this paper that the feasible region   X    is compßct 

(closed and bounded) and non-empty as well as convex, that the    f.    are 

r*r on   X , continuous as well as concave^ on   X ,     and that    h   is continuous as well 

as increasing on the attainable payoff set   f[X].    We denote by   f    the 

vector-valued function (f,,  fp), and by    f[X] the image In    E      of   X 

under    f .    A point    x    e X    is said to be efficient if and only if there 

does not exist another point   x' e X    such that    f^x') > f.(x ),  1 = 1,2, 

with strict inequality holding for at least one    1 ; in other words. 

jl/    A function f(x)    on a convex set    X    is said to be concave if   x , 

x" eX,  x* / x2 ,   imply    ^tx1 + (l-t) x2) > tfU1) + (l-t)  f(x2) for 

all 0 < t < 1 .    An Important property cf concave functions  Is that 

a non-negative linear combination of such functions is always concave. 

This property is not shared by quaslconcave functions (see footnote U), 



r 
5 

if and only if f(x ) is in the admissible set. The set of optimal 

solutions of (P^) for a fixed value of <* is denoted by X*(»), and 

any n-valued function x*(a) on [0,1] that satisfies x*(a)  € X*(a) for 

each a   is called an optimal solution function of (Pa). 

For brevity, the basic assumptions stated above will not be explicitly 

mentioned in the statements of the formal lecmas and theorems belov. 

However, the proofs will be explicit about which assumptions are actually 

used. 

The r?'i.der will find it convenient, in following the development 

below, to keep Fig. 1 in mind. It represents, in payoff space, a 

simplified typical situation that might occur under tur assumptions. The 

attainable payoff set is the interior of the closed curve ABCDEA, the 

admissible set is the heavy curve ABC, and parts of selected level 

curves of h have been drawn and labeled. If x* is optimal in (l), 

then obviously h(f(x*)) = 13 and f(:■:*) is point B. 

FIGURE 1 



The first two lemmas provide the primary motivation for a 

computational approach to solving (l) in terms of the parametric program 

(P Qf).    They can easily be Interpreted in terms of   Fig. 1. 

Lemma 1: 

At least one point at which   h(f(x)) achieves its maximum over   X 

is efficient. 

Proof; 

By the compactness of   X    and the continuity of    f   and   h,  (l)   has 

at least one optimal solution   x .    Similarly,   there exists a point 

x» which maximizes    f,(x) + fp(x)    over X subject to the additional 

constraints f.(x) >    f (x  ),    i = 1,2.      Now    x'    is easily seen 

to be efficient,  for the contrary contradicts the choice of   x'-    Finally 

we observe that   x' must also solve (l); for x'   is feasible in (l),  and 

fjCx1) > f.(x ),    1 - 1,2,    implies, by the fact that   h    is increaalns, 

that   h^x')) = h(f(x0)). 

Lemma 2: 

If    x   is efficient, then there exists a number    ot   in the unit 

Interval sv.ch that   x      is  an optimal solution of (P a ). 

Proof; 

The proof uses the concavity of    f    and convexity of   X    in an essential 

way,  and is an application of a basic separation property of convex 

sets.    It can be found,  for example,  in Karlln  [9] or Geoffrlon [b]. 

Lemmas 1 and 2 imply 

Theorem 1; An optimal solution of (l) Is found among the optimal 

solutions of (P a) for some o' in the unit Interval. More precisely, 

if   a*    is optimal in 



(2) Maximize    H(a) , 
a e [0,1] 

where we define H (oO on the unit interval ty 

(3) H(a) = Maximum    h(f(x)), 
x e x*(a) 

then    (l)    is solved oy any point    x e X*(a*)    satisfying   h(f(x)) = E{a*)m 

That   H(a) is well-defined follows from the non-emptiness and 

compactness of   X    and the continuity of    f    and   h, which imply that 

h(f(x)) is continuous on the non-empty rnd compact set   X*-(a),    H(») 

achieves itr. maximum by Lemmas 1 and 2 or by the fact that it can be shown 

to be an upper semi-continuous function on the compact set     [0,lj. 

The computational usefulness of (2) depends primarily un how readily 

H(a) can be computed on the unit interval.     If it can be computed easily, 

then (?) is likely to be a quite efficient means of solving (l),  for 

finding the maximum of    H(QO is but a one-dimensional maximization problem. 

Before taking up the question of how to compute    H(cv), we point out an 

easy prrtlal converse of Lerrma 2 that portly justifies the assertion made 

earlier concerning the availability of a porcion of the admissible set as 

a by-product of the cplonlations for solving (ll, 

Lemtta 3; 

Every pojnt of    X*(a)  is efficient when    a    satisfies    0 < a < 1. 

Some point of    X*(a)  is efficient when    a = 0 or 1. 

Comyatinp: E{a) 

Lez    a be fixed in the unit interval. It might be feared that 

computing H(a) requires not only finding all optimal solutions of (P ») 

in order to get X*-(a), but also solving a maximization problem 



of the same form as (l) itself;  for it was noted that    X*(Qr)    !.B a 

non-empty and compact subset of   X,    and from the convexity of   X    and 

the concavity of   a f (x) + (l-c) f2(x)    It follows that    X*(a)    is 

also convex.    Fortunately, however,  it turns out that computing H(Qf) 

Is not nearly so difficult as this observation would seem to indicate. 

The results of the following theorem show that   K(a)    con usually be 

compited on  [o,l]   with little,   if any, extra work beyond finding by 

pejametrlc programming any optimal solution function    X*(QO    of (P a) 

or. [0,1]. 

Theorem 2; 

A. Let    01   be fixed in the unit interval.    If (P Qf) has a uniQil® 

optimal solution x*(a),  then    H(a) = h(f(x*(a))). 

B. H(0) = h(f(x))    for any efficient point    x e X*(o). 

H(l) = h(f(x))    for any efficient point    x e X*(l). 

C. Assume that either    f,  or fp (or both) is linear on a lino 

segment in   X   only if it is constant on it.    Then for each   <* 

satisfying 0 < or < 1, we have 

H(a) = h(f(x))    for an^;   point    x e X*(a). 

D. Let X*(QO be anv optimal solution function for (P or) en [o,l] that 

is continuous everywhere except possibly for a finite number of 

simple discontinuities. For each point a' of discontinuity, 

define x*(üf») and x*( c") as the left-hand (unless a» = 0) and 

right-hand (unless a' -- l) limits of x*(a) at a», respectively. Then 

1. H(or) = h(f(x*(«))) at every point of continuity in [0,1]; 

2. H(0) = h(f(x*(0))) if 0 is a point of discontinuity; 

3. K(l) = h(f(x*(l))) if 1 is a point of discontinuity; 



U. If a« is a point of discontinuity satisfying 0 < a' < i, then 

(3.1) H(a<) = Maximum  h(f( t x* (a«) + (l-t) x^C«') )) and 
t e [o,l] 

(3.2) H(a') = Maximum  h(t f(x*(a')) + (l-t) f(x*(a')) ). 
t e [0,1] 

Before undertaking to prove the results of this theorem, we remark 

that part A applies, for example, when ot fAx)  + (l-a) f^x) Is 

strictly concave; that part C applies, for example, if one of the f, 

is a negative semi-definite quadratic form; and that part D applies to 

all parametric programming algorithms known to the author in the sense 

that when they are applicable to (P a), they all produce an optimal solu- 

tion function X*(QO that is continuous everywhere on the unit interval 

2/ 
except possibly for a finite number of simple discontinuities.- Note 

that in part D, to compute H(a) for a point of discontinuity one has 

a choice of solving either of the two one-dimensional raaximization 

problems (3.1) and (3.2). 

The burden of the remainder of this subsection is to establish the 

results of Theorem k. 

Part A is trivial. Part B is nearly so, and may be seen as follows. 

The efficient points in X*(o) are obviously precisely those that 

maximize f, over X*(o), Since fp is constant over X*(o) and 

h is increasing, h(f) is maximized over X*(0)      • where f, is 

maximized. Thus H(o) = h(f(x)) for any efficient point x in X*(o). 

A similar argument proves the assertion regarding H(l). Toward proving 

parts C and D, it is convenient to write (3) in the alternate form 

2/ In fact one suspects that the exploitation of possible continuity 

in the optimal solution of (P ^) as ^ varies is necessary for a 

successful parametric programming algorithm. 
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(h) H(ü') = Maximum   h(y) , 
y e f[x*{ot)] 

vhere f[X-*(a)] is the image of X-*(a) under f and y is a generic 

element of E2. 

Lemma h: 

For each fixed value of a  satisfying 0 < Qf < l,  f[X*(a)] is either a 

2 
singleton or a compact line segment of non-zero length in E     with ncr- 

1 2 
mal (a,   1-a).    In the latter case,  if    f(x )  and f(x ) are the end- 

12 1 0 

points  of the line segment,  then    f(tx   + (l-t)x ) = t f(x )+(l-t)  f(:c ) 

for all    t    satisfying    0 < t < 1. 

Proof; 

Let    0 < a < i be fixed.    By definition,    X*(Q')     is the optimal 

solution set of    (^a)•    Hence 

a f^x) +  (l-Qf)  f2(x) = v(ö) 

for all x e X*{ot),    where v(Q') is the optimal value of (P^). 
p 

Honce f[X*(a)] is a subset of the line (y = (y^oy«) e E : 

1      2 
a y + (i - a) y = v(a)). Suppose that f(x ) ^ f(x ), where 

1  2 
x , x e X*(a). Let t be any real number in the unit interval. Then 

(tx1 + (1-t) x2) G X*(a) by convexity, and f±  (tx
1 + (l-t) x2) > tfi(x

1)+ 
p 

(l-t)  f.(x  ),    i = 1,2,  by concavity.    Hence 

v(a) = af^tx1 +  (l-t) x2) + (l-a) f^tx1 + (l-t) x2) 

>    a (tf^x1) + (l-t) f^x2)) 

4-    (1-a)  (tf2 (x1) + (l-t) f2(x2)  ) 

= t(a f^x1) + (1-a) f^x1)  ) 

+ (l-t) (cvf^x2) + {l-a) f2(x2)) 

= t v(of) + (l-t) v(a) = v(a) , 



11 

troa vhich it tollovs (recall that 0 < cr < 1) that 

t( l( ,2 l 2 tx + 1-t; x ) • tt(x )+ (1-t) f(x ) • 

It remains only to show that f{X*( a)] is compact. This follows 

immediately fro. the continul ty of f and the compactness of Xi!·( a) .. 

This lernM8 im~lies that to compute H(a) tor fixed a satisfying 

0 < a< l it is sufficient to know at most two points in X*(a): any 

~point if f[X*(a)] is a singleton, and any~ points xl. ::.o1d x2 

which each map into a different endpoint o'.;llervise. In the first case, 

trca (4) we see that H(a) • h(f(x)) for any x c X*(a); and in the 

second ease, we have 

( 5) H(a) r. Maximum h(t f(x1) + (1-t ) f(x2) ) 
t c [O,l] 

or, interestingly enough, the alternative 

( 6) ( 1 2 H a) = Maximum h(f(tx + (1-t) x ) ). 
t c (O,l) 

Fr 0111 ( 4) 1 we see that the nex+. lemma implies Th. 2C. 

Lelr.ma 5: 

It either f 1 or r 2 (or both) is linear on a line segment ot X 

only if it is constant on it, then flx*(a)] is a singleton for each 

fixed a satisfying 0 < a < 1. 

Proof: 

Let a be fixed, 0 < a < 1, and let one of the ti, say r1, 

satisfy the hypothesis. Suppose that r[X*( a)] is ,!!2! a lingleton. 

Then there are points x1, x2 e X*(a) such that t(x1) ~ t(x2), 
~ 

and by Lemma 4 t( x) is linear on the line sepent running tram x·~ to 

2 
X • 

I l 2 l ( 2 B.y hypothesis, then, f 1\x ) • t 1(x ), and so t 2(x ) ~ t 2 x ). 

It t 2(x1) <(reap;>) t 2(x0
), then x1 (resp. x0

) is not eft1cient1 whieh 

contradicts t he known efficiency (by Iaaa 3) of both x0 and x1• 



12 

Remark;    A non-trivial example of a criterion function that is 

linecr on a line segment of   X    only if it is constant on it,  is a 

negative semi-definite quadratic form.    If the other criterion function 

is arbitrary, say linear, then f[X^(a)]    must be a singleton even though 

X*{ot) need not be a singleton. 

Toward proving part D of Th.2, we establish 

Lemma 6: 

If    x* (a)    Is  any optimal solution function for    (P«)    on  [0,l],  then 

f (x* (»))  (resp.  f-(x*(ci'))  )    is monotonically non-decreasing (resp. 

non-increasing) on  [0,l]. 

Proof; 

Let    Of ,  a     be such that    0 < a   < Q^ < 1.    By the definitions of 

x^)    and    x*(a2), 

(7) Qv, f-^x*^)   ) + (1-Qr2) f^x^C^)  ) < a2 f^x^^)) + (l-o^)  f^x*^)) 

and 

(8) ai f^x^Qfg)  ) + (1-^) f2(x*(a2) ) < ^ f^x^^)) + (i-o^) f^x^^)), 

Multiplying (?) by (l-a ) and (8) by (l-O    and adding,  after rear- 

rangement one obtains      (a    - a ) (f (x*(ck )  )  - f (x*{o?2))  ) < 0 , 

from which it follows that    f-U* (a^ ) < fAx* (»2)  ).    Similarly, 

by multiplying (?) by    »      and (8) by    a      and adding,  one obtains 

that    f2(x* (oij  ) > f2(x* (a2) )  . 

Lemma 7: 

3/ 
X*(QO    is an upper semi-continuous mapping— on  [0,l]  . 

3/      The definition of upper semi-continuity for set-valued functions 

that wo use is that of Debreu  [3].    As applied to   X*(a), upper 

seral-continuity at    a' €[o,l]    means:    < arJ > - a     where a1e[o,l], 
o • .0 

and   < x*i^) > - x0,    where    x*(cr ) € X*{a3),  implies x0 € x*(^ )  • 

"-■^TT1 
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Proof; 

Apply Th. h of sec.  1.8 of Debreu [3,  p.  19] to    (P^)   . 

Lemma 8. 

Let    x*(of) be any optimalfrlution function for (P ) that is 

continuous on the unit interval except possibly for a finite 

number of simple discontinuities. At each a satisfying 0 < &   < 1: 

A. If x*{ot)    is continuous at a ,    then f[X*(a )] is a singleton; 

B. If X*(QO has a simple discontinuity at a ,    then x*ia ) -; 

liir x*{a)  and x^(a ) = lim  x*(a) are both in X*(^ ), and 
a - a ~ 0       a -* a+ 0 

0 0 

f[X*(oi  )] is a compact line segment (possibly of zero length) 

with end points f(x*(Q' ) ) and f(x*(a ) ). 

At the endpoints of the unit interval; 

C.  lim   x*{a)    is in X*(0) and is efficient; 
a -*0 + 

L".  lim   x*{a)    is in X^(l) and is efficient. 
a -* 1- 

Voof; 

Let    x*(»)    be continuous at    &   satisfying    0 < Qf   < l.    Guppose, 

contrary to A., that there exists    x0 e X*(a ) such that    f(x0) ^ f(x*(a )). 

Since    f(x )  and r\K*(oi )) must both lie on a line through    f(x ) 

with normal    (^ ,   1-a ),  either    f^x0) < fT(x*(a ))  or    fAxHa )) < f1(x0) o o 1        ' 1 O   ' 1 0 1 

In the first case, by the continuity of    f1(x*(a))    at    a     there exists 

r. number    ^ satisfying    ot < a     such that    fJxHa)) > f-A*0)'    But this 

contradiccs the raonotonicity of    f,    proved in Leraua 6.    A similar 

contradiction can be obtained in the second case.    This proves pa^t A, 

Let    x*(oi) have a simple discontinuity at a point    c   satisfying 

0 < a   < I,    By Lemma kf   f[X*(a )] is a compact line segment.    Denote 
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lta x*(a) (resp. lim x*(a)) by x*(a ) (resp. x* (a ) ). ~m 
a~a- a~a+ - 0 o 

0 0 

Iaaa 7' !*(a 0) P"Od x*( Q' 0) are in X*( a 0). It remains to show that 

t( !*<a 
0

) ) and f'( i*( a 
0

) ) are the endpoints of' f' (X*( a 
0
)). Suppose 

the contrary. Then there exists x
0 ~ X*(a ) such that f 1(x0

) < f
1
(x*(a )) 

0 - 0 

and t 2(x0
) > f2(!*(a

0
)), or f1(i*(a

0
)) < f

1
(x0

) and t 2(x*(a
0

)) > f1(x0
). 

We shall consider the first case Rnd construct the contradiction that there 

exists a value of' a such that 

A sli~ilar construction leads to a contradiction for the second csae. 

For all a c (o,l), we have a(f1(x0
) - t 1(x*(a)) ) 

+ (l-a)(r2(x0 )-r2(x*(a))) • (a- a
0 

+ a
0

) (t
1
(x0

) - r1(x*(a)) ) 

+ (1-a + a
0 

- a
0

) (f2(x0 )-r2(x*(a))) • (a - a
0

) (t1(x0
) - f1(x*(a)) 

+ f2(x*(a)) - f2(x0
)] + (ao(tl(x0

) - fl(x*(a))) + (l-ao)(t2(x0
) - t2(x*(a)))) 

~ (a-ao) (tl(x
0

) - fl(x*(a)) + t2(x*(a)) -f'2(x0
) ], 

where the last inequality follova f.rom •.-be tact that the quantity in curly 

br3.Ckets is non-negative (recall that x0 solves (Pa
0
)). By the left 

continuity of f(x*(a)) at a and the fact that (t1(x0
) - t 1(x*(a ))) and 

0 - 0 

establich~ tor all a less than but sutticiently near 
of 

the proof /part B. 

a • 
0 

This complet!!s 

Finally ve prove pert C. A stailar argument proves part D. By 

Leima. 7, x*(O) ; lim x*(<X) is in X*(O). Suppose that i*(O) is 
a ~ 01' 

not efficient. Then there exists a point x 0 c X such that 
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f 1(x0
) > f 1(i*(O)) 

f 2(x0
) > f 2(i*(o)) 

(since x*(O) solves (P ), 
0 

is impossible). Thus x0 
' X*( 0). 

.. 
Let a> 0 be 

such that f 1(x0
) > f 1(x*(a)). This contradicts the monotonieity of 

f 1 established in Lema& 6. 

Th. 2D is ectablished 'ty parts A and B of Lemma 8 in conjunction 

vi th r.e.a 4, and pa't'ts C and D of Lemma 8 in conjunction vi th Th. 2B. 

The ease in vhieh h is quaaieoneave 

In this sub-section ve introduce an additional hypothesis on the utility 

indicator function h which permits attention to be restricted to a (hopefully 

small) subinterval of [O,l] vhen (2) is being executed. We assume nov that h 

is quasiconcave!f on the convex hul12f F of the admissible payoff set. 

Quasieoncavity is a veaker property than concavity, and is almost universally 

assumed M a property of utility indicator functions in consumer demand theory 

of traditional economic analysis. For further discussion of quasiconcavity, 

see Arrow and Enthoven [1]. 

An immediate consequence of this additional hypothesis, in the presence of 

our previous assumptions, is that h( f( x)) is nov quasiconcave on X (see e.g, 

Berge [2, p. 207]). Although (1) nov becomes susceptible to various direct 

(non-parametric) approaches t o quasiconcave programming, the approach 

r epresented by Th. 1 CEn be very efficient vhen an efficient parametric 

programming algorithm is available for { Pt:r) -- especially in view of Theorem 3 

below. 

!:,/ h(y) is quaaiconcave on the convex set F if and only if (y c F:h(y) ~ k} 

is a convex set for all real k. An equivalent definition is that 

h(t y1 + (1-t) y2) ~Min (h(y1), h(y2)} for all y1, y2 in F cond 0 < t < 1. 

Simple examples of quasiAoncave increasing h are: Min(y1,y2}; y1.y2 for 

yl,y2 ~ 0; and y~l • Y2 2 for ~1' ~2 ~ 0 and yl,y2 > o • 

. d/ The ~onvex ~ of a subset of Euclideen space ia the smallest convex set 

containing that set. 
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Lemma 9: 

Let x1 solve (P^1),  i = 0,1,2, where 0 < a1 < a0 < a2 < 1  Then 

there exists a numter t, 0 < t < 1,  such that 

f^x0)^ t f.U1) + (1-t) f.(x2),  i = 1,2. 

Proof: 

Denote    f(xx)    by f ,     i = 0,1,2.    We assume that    f    does not coincide with 

1 2 either    f      or    f ,    for otherwise the conclusion of the lemma vould be 

trivially true.    Suppose that the conclusion is false.    Then there does 

not exist a number    t > 0    that satisfies the following system of inequalities 

(9.1)        t(fl .. ^)< (f° - f^) 

(9..2)        t(^ - fl)<{t0
2 - f2) 

(9.3) t < 1. 

By a standard theorem on non-negative solutions to linear inequalities 

[U, p, hj],     there exist non-negr.tive real numbers s,, Sp, and s, such thaJ'. 

(10)        (fj - f^) .c1 + (fg - fg) s2 + s3 > 0 

and 

(}1)        (f0  - f2) Sl+ (f° - f2) s2+ s3<0. 

Multiplying (ll) by -1 and adding the result to (10),  one obtains 

(12) (fj -  f°)  s: + (f^- f°) s2> 0. 

Using the fact  that    s^ > 0,  from (ll) one obtains 

(13) (fl - f°) s1+ (f2 - f°) s2> 0. 

Now    s1     and    Sp    cannot both vanish.     Dividing (12)  and  (13) by (s, + bp), 

recalling that    s  ,  Sp > 0,     end defining    I as s-j/^s, +  Sp),     one obtains 

(14) (fi - f°)5+ (tl - t0
2) (!-?)> o, 

(15) ifl - f°)5+ {f22 - f°) (1 - §)> 0, 
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and 0 < £ < 1. 

Define v (a) = a f^+ {l ~ a) f^,  J = 0,1,2. 

By the definitions of x , =0,1,2, v.Ca*1) > v (a"3) for j =0,1,2 and 
J     — K 

k ^ j. Thus 

(16) v^1) - v^a1) >  0 

(17) v^cv0) - vo(»
0)<0 

(18) v2(^
2) - vo(«

2)> 0 

(19)  vo(d
0) - vn(a

0) < 0 . o 

Now (l^) and (15) may he written as 

(20) VjU)  - vo(^)> 0. 

(21) v2(S)  - v0(§)> 0. 

By the linearity of   vJdt) - vo(cv)    in    » ,   (l6),  (l?),  and (20)  Imply 

that    i < ö0 (recall that    Q'1 < &2).    Similarly,  (l8),   (19),   and (2l) 

imply that    % > & ,    This contradicticn implies that the conclusion 

of the lemma must be true. 

Theorem 3; 

Assume that    h    is  quasicorcave on    F.    If    x*(a')    is any optimal 

solution function of    (Pcv)   on   [0,1],  then    h(f(x*(a)))    It quasiconcave 

on   [0,1], 

Proof; 

Let    0 <or < or < a   <!,  and let    x    e X*(r/),   i = 0,1,2.    By 

Lemma 9}  there e::ists a number    t,  0 < t < 1, such that 

f.(x0)> t ^(x1)^  (1-t)  f.(x2),   i = 1,2  . 

aus   h(f(x0)) > h (t fU1) + (i-t) f(x2)) 

> Min  {h (f(x1)),h(f(x2)))  , 
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where the first inequality holds because h is increasing and 

the second because it is quasiconcave. This shows that h(f(x*(o:j)) 

is quasiconcave on [o^l]. 

Theorem 3 often makes possible a considerable simplification 

in the maximization of H(a?) en the unit interval, by allowing 

part of the interval to be ignored by virtue of the easy 

Corollary 3.1: 

If    x1 ex* (a-1)    and    x    OC*(^2) , where    a1 < a2 ,     then 

MfU1))   - h(f(x )) < 0 (resp. > 0)  implies that    H(^)    cannot 

1 2 achieve  its maximum at    c < a    (resp. a>  a ). 

EXEMPLARY ALGORITHMS 

In this section we apply the results of the last (principally Part 

D of Th,  2 and Cor.  3.1) to show how known parametric programming algorithms 

car. be used to solve (l)  in the manner suggested by Th,  1.    For illust- 

rative purposes we choose parametric  linear p^ogrsmming  [5l> Wolfe's 

method of parametric quadratic programming [l3]^  and Geoffrion's method 

of parametric concave programming  [6],    The six algorithms presented 

below are given in outline form, with no attempt made to give details of 

the most 61^010^. organization ol  the computations. 

j^vametric Linear Programming 

In  chis subsection we assume that    f.    and    fp    are linear and that 

X    is determined ^ •- linear Inequality constraints,  so that parametric 

linea    programming   :an be used to produce an optimal solution function 

x*(a)    for    (Pa)    on  [0,l].    It Is well known that    X*(QO    will be 
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piecewise constant,  and that without loss of generality it can to 

assumed to be of the form 

x*(a) = x1    for   a1 < a < Qf1+1 ,  i = 0,..., N, 

where    0<cr'<...<cr<i    (N    finite and possibly   O)    arc the 

points of discontinuity and we have put    cv' = 0    and    &        - 1,    Also, 

x*(l) = xW      ,    Thus by Th.  2D we have    H(cv)  ^ h(f(x1))  for    c1 < a < Q'1+1, 

i = 0, ...,N ,  H(0) = h(f(x0))  ,  and    H(l) = h(f(xN)).    If    N = 0,   then 

obviously   x      is optimal in (l).    If    N > 1,   then we have    x(a ) = ^ ' 

and   ^(a1)  = x1    for    i = 1,...,  N;     consequently,   (3.1)  and (3.2) 

become 

(22) H(ö1)  = Maximum    h(f(t x1"1 +  (l-t) x1  )) 
te[0,l] 

(23) H(^1)  = Maximum    h(t ^x1"1) +  (l-t)  ^x1)  ) 
te[0,l] 

fox-    i = 1;...,  N.    Since    x^^a')    is plecewise constant we see that 

when   II > 1,  H(Q')    achieves its maximum at a point of discontinuity   ».*; 

i    -1 i 
therefore the point    t* x *       + (l-t*) x *    is optimal in (l), where 

t*    satisfies    H(a;i*) = h(f(  t* x1* "1 +  (l-t*) x1* )) or,   alternatively, 

H(ai*) = h(t* f^x1" ' 1) + (l-t*) f(x1*)   )  (cf.   (5) and (6)).    We thus 

obtain the following algorithm. 

Algorithm 1 

Step 1. Solve (P^) by parametric linear programming to obtain ot 

and x , i = 0,...,N, computing the quantities H(» ), 

1 = 1,..., N by (22) or (23) as the calculations progress. 



20 

If   N = 0,  stop-  x0    is optimal in (l).    If    i: > 1, 

then go to step 2. 

Step 2.     Let    H(a *)    be the largest of the quantities computed 

at step 1.    Then    t* x1^ "1 +  (l-t*) x1*    is optimal in 

(l), where    t*    is defined as  in the text so as to achieve 

H(c^).     Stop. 

If    h    is quasiconcave,   then due to the consequent quasi concavity 

of    H(Q')     it is rarely necessary to solve    (Pa)    on the entire unit 

interval,   or to compute all of the    H(cr).    In Algorithm 2, which 

exploits  the quasiconcavity of    n,   it is assumed for simplicity of 

exposition that the parameter    O-'    increases,  starting from the value 

0.     A similar algorithm can easily be constructed to cover the more 

general ca.^e in which    a   has  an arbitrary starting value and can 

decrease as veil as increase (the closer the starting value is to the 

one that maximizes    H(cv),  the less work is required to solve (l) by 

this  approach).    This same remark applies to Algorithms k and 6. 

Algorithm 2 

Step 1.    Solve    (Po)     to   obtain    x0  .    Put I = 0    and    1 = 1. 

Step 2,    Solve    (PQ')    by parametric linear programming as    ot    in- 

I 1+1 creases  above    &     until either    a = l    or    » is 

encountered.    In the first case,  go to step k:  in the 

1+1 
second, determine x    and go to step 3. 

Step 3. Compare h(f(x1)) with h(f(xI+1)): 

a. If h(f(x )) < h(f(x  )), increase I by 1, 

put I =1. end return to step 2- 



b. 
I I+l If h(f(x )) = h(f(x )), increase I by 1 end 

return to step 2 ; 

e. If h(f(xi)) > b(f(xi+l)), increase I by l and 

go to step l~. 

Step 4. If I • 01 stop; x0 is optimal in (1). If I~ l, then 

compute by ( 22) or ( 23) and find the lugest of the 

quantities H(ai) (! ~ i ~I). If the maximum is achieved 

tor H(~1*), then t* xi* -l + (1-t*) xi* is optimal in 

Remark: 

(1), where t* is defined as above so as to achieve 

H(~*). Stop. 

In both of these algorithms, a one-dimensional maximizat i on 

problem ((22) or (23)) must be solved each time an H(ai) is 
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required. Frequently these one-dimensional problems are trivial ; but 

even when they are not, various methods are available (12]. When 

h is quasiconeave, Fibonnacci search is particularly attractive. 

PRra,etric Quadratic Prosramm~ 

In this subsection w~ assume that f1(x) is linear, that f 2(x) 

is a nega~ive semi-definite quadratic form, and that X is determined 

by linear inequality constraints. Then (Fa) can be solved on {o.l] 

oy Wolfe's method of parametric quadratic programming (his so-called 

"long form") [13], among others, for an optimal solution function 

x*( a) that is continuous on [o, l]. By Th. 2.D.l, H(a) • 

h(f(x*(a))) on [O,l], and therefore the point x* in the image of 

[o, l] under x*( a) which maximize£ h( f( x)) is also optimal in ( 1). 

nov from Wolfe's results it follovs eP..sily that this image set is 



of the form 
N 
u i=o 

i i+l 
X ,X 
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-1-m 
, where x ,x is a line segment in 

~ with endpoints xi and xi+l and N is a finite positive 

integer.. The points xi(i = O~l, ••• ,N + 1) are determined serially, 

in order of increasing superscrJpt, from the modified Simplex procedure 

employed by Wolfe §I (xi ;;; x«( ct·) for certain ,} sat is tying 

o • oP < of< ••• < J1 < J •I+l = 1); a termination signal accompanies 

N+l the determination of x Putting these observations together, 

ve obtain 

Algorithm 3 

Step 1. Solve (ra) on [O,l] by Wolfe's method to obtain 

i x, i = O,l, ••• ,N + 1, computing the quantities 

TJi =Maximum h(t(). xi-l + (1-A) xi)), i • l, ••• ,N+l, 
()<).< l 

as the calculations proceoo. 

Step 2. If 11i* is the largest of the 11i (ties are illllllaterial) 

then ).* x1«·-l + ( 1-X*) xi* is opt1mal in ( 1) , where 

X* satisfies 11i* • h(f(A* xi* -l + (1-X*) xi*)) • 

If h is quasiconcave, then so is h(f(x*(a))), and an 1m-

:provetl version of Al.gorith.'l!. 3 can be c0118tructed that bears much 

the same relation to it 88 Algorithm 2 does to Algorithm 1: 

AJ.gori thlll ~ 

Step 1. Solve ·(Po) and obtain x0 by Wolte'g method. Put 

! •l ani I • o • 

§I Actually, Wolfe's algoritt.m is addressed to a reparameterized 
version of (Fa) that uses X/'A+l on [O,•] in place of a 
on [O,l]. But this causes no essential difficulty. 



Step 2. It I • N + 11 go to step 4; otherwise, determine 

I+1 x by Volte'a method &nd go to step 3. 

Step 3. Compare h(t(xi)) with h(t(xi+1)): 

a. It b(t(xi)) < h(t(i+1)), 1ncre&Re I by 11 

put ! • I, and l·eturn to step 2; 

b. It h(t(xi)) c: h(f'(x1+1)), increase I by 1 

and return to step 2J 

c. It h( f'( x1 )) > h( t( xi+ 1)), increase I by 1 and 

so to step 4. 
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Step4. C0111pute the quantities 111 =Maximum h(t(Axi-1 + ( .... ).)xi)), 
0<~ --

! ~ i ~ I • It ·iji* is the largest ( tles are imn:aterio.l) 1 

then ~* xi•-1 + (1-~) xi* is optime.l in (1), wher~ '·* 
satisfies 111* a h (f(~* x1*-1 + (1~~) xi*)) • 

The remark tolloving Algor1thl'l 2 ia appropriate here also with 

regard to c0111p1ting the Tli, especia~ when h is quasiconcave ••• 

tor ~'en h(t(~ xi-1 + (1-~) xi)) is quasieoncave in ~ on [o,1J. 

Parametric Concave_Programm!~ 

When X is det~rminca by concave inequality (~) constrai~ts 

~nd certain additional hypothese~~ are satisfied, Geot':trion's method 

[6] cen be uaed to eol-le (Pa) on [0,1]. 'lbe x*( ct) so produced 

iE' continuous, and so by 'lb. 2.D.1. it follows that H(a) = h(t(x*(a))) 

o:1 [o, 11 • 
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Algorithm !? 

Solve    (Pa)    on  [0;l] by Geoffrlon's method to obtain 

x*(a),   all the while evaluating   h(f(x*(Qr)) ) # Determine the 

value    o*   at vhjch    h{f(x*{oi)))    achieves  its maximum on   [o, l]   . 

Then    x* (a*)    is optimal in (l). 

If   h    is quasiconcave,   then es before    (PoO    doec not 

ordinarily have to be solved on the entire unit interval: 

Algorithm 6 

Step 1.    Solve    (Po)    by Geoffrion's or some other irethod to 

obtain    x*(o). 

Step 2.    Determine    x^cv)    as    a   increases above    0   by 

Geoffrion's method,   all the while evaluating 

h(f(x*(Q0)).,   until a value    ot*    is encountered above 

which    h(f(x*(<*)))    begins to decrease.    Then    x*{ot*) 

s optimal in (l), 

AlgorlLhrjL  Lj and 6 are not limited to Geoffrion's  nethod,   of 

course, but apply equally veil to any parametric concave prorqrsmmlng 

algorithm that produces a continuous optimal solution   x*(<*)    to 

(Pa)    on  [0,1], 

EXTENSIONS 

In mathematical progratrjning with one objective function,   the 

convention is usually made to discuss only maximization problems 

or only minimization problems,  for the results for one class of 

i^ 

~'i«* 
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probleu are cUrectly applicable to the other when appropriatP. sign 

~ are made. Dle same situation pr:::vails here. We have ~hnaen 

to diacuaa the case where both ti are being maxillised, but our 

results are applicable to the other cases (min t 1, min t 2; !Din t 1, 

.u t 2: max t 1, min t 2) vith a!!PI"opri &.te aisn changes. It h is 

increasing in t 1 but decreasing in t 2, tor example, define 

f2 as - t 2 and h'(t1,t2) as h(t1,-(-t2)). Then h' is 

increasing in both t 1 and f2, and if f2 is concave (this is 

true it and only it t 2 is a c011vex fUnction) then our results 

apply it h' is used in place ot h and f2 is used in place 

of t 2 • As an ex .. ple of the application ot this idea, consider 

t be "linear tractional" prograadng problem.J! 

Maxillize (ex + Y) /( dx + 6) subject to Ax ~ b, where c and d 
X> 0 

are n-vectora, b is an m-vector, A is an m x n matrix, and Y ar.d 

6 are acalars. We assw.e tor aiapllcity that t 1(x) a ex+ Y and 

t 2(x) a dx + 6 are strict~ positive tor aJ.l feasible x. :1etin1ng 

h ; t 1(x)/t2(x), ve observe that h ia increaatns in t 1(x) but decreasinG 

in t 2( x) • Dlua we consider h • aDd t 2 • , defined aa abo'Ve, in place ot 

b and t 2• Since it 1& euily .ieen that h' is quaaiconc&Te and that 

' t 1 and t 2 : ( ·f2) are linear, .AJ.&oritba 2 appllca, thereby providing a 

procedure tor solving the linear tractional progrllll by means ot par&'Uetric 

11 Dle linear tractional JII'Osr-ing problem is due to Isbell 8IJ4 

Marlow [7, ~· 82). ~veral •thodafbr solving auch prosrams are 

available, .,.t of the;n baaed on linear progr8111111Dc techniqur.s. 

Por a brief sui4e to the literature, see Jokach [8, p. 197]. 
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linear prograzrming.~ Note that (22) and (23), which are used by 

Algorithm 21 are particularly simple in this case. If dx + 6 is replaced 

by a positive semi-definite quadratic form, then by similar reasoning we 

see that Algorithm 4 provides a method for "linear/quadratic fractional" 

programming. 

A trick sometimes useful in ordinary mathematical programming is to 

perform a nonlinear change of scale on the criterion function in order 

to make it concave (assuming that it is to be maximized) or of a simpler 

functional form, ao that an available a1gori thm can be applied. For 

n Xi 
example, to minimize ni•l ~ over x ~ 0 satistying Ax ~ b, where 

( ) n Xi) qi > 0 i cl, ••• ,n 1 it is more convenient to minimize 1n(ni•l qi • 

t;.1 xi ( ln ~) instead because then linear programming can be used. In 

the remainder of this section we shall shov that this idea can be used to 

greatly extend the paver ot the present method of bi-criterion progruming. 

(io) 

Dgfine the scale-modified pfll'ametric sub-problem 

Maximize a g1(t1(x)) + (l.a)g
2
(t

2
(x)), 

x c X 

where the gi are henceforth assumed to be strictly increasing, clitterentiable 

functions defined at least on ti [X]. We shall also assume that gi(fi(x)) 

is concave ( a sufficient but not necessary condi t1on for which is that 

s1 be concave) ald tor simplicity that the fi are clitterentiable. We dez:ote 

-the optimal solution set ot ('a) by x(a). 

In the sequel. h is not assumecl to be quuiconcave except in 'lheore!D 

3A. We shall obtain counterparts ot I-nea 2 encl 3 encl Theorems 11 2, end 3. 

lellll!l& 2A: 

It x0 is efficient, then there exists a number aP in the unit interval 

such that x0 is an optimal solution ot ( P a 
0

) • 

Y The assumption that (t1(x), t 2(x)) is 1n the interior ot the positive 

orthant for all teuible x can be relaxed, at the expense of slightly 

modifying Algorithm 2, to the minimal requirement that clx + 6 f. 0 

for al.l feasible x. 
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Proof: 

0 Since x is efficient, by Lemma 2 there exists a n• !uber v in the 

unit interval such that x0 is an optimal solution of (Pv). Because 

of the concavity of vf1(x) + (1-v) f 2(x), 

we therefore have 

(2~) Vx(v f 1(x) + (l-v) f 2(x)) (x-x0
) ~ o, v x € X, 

vhere V x is the gradient operator. Put 

a • 0 

vhere gi (f:t (x0
)) is the fir-st derivative of gi evaluated at; fi. ( r

0
). 

Since g1 is strictly increasing, ve have gi ( r1 (x
0
)) > 0 1 i = l, 2. 

Hence a is in the unit interval. 
0 

0 To shov that x is optimal in 

-(P a~), because of the concavity of a
0
g1(f1(x)) + (l-a

0
) s2(f2(x)) or. 

X it is equivalent to show 

(25) Vx (a
0

g1{f1(x0
)) + (l-a

0
) g2(r2(x0

))) (x-x'=') :_: '" 1 V x c X. 

By t l..c C.efini tion of a 
0

, the gradient vector in ( ~5) is 

(1/S) ((v/ei (f1(x0
))) gi(f1(x0

)) Vxr1(x0
) + 

((1-v)/ g2 (f2(xo))) g2(f2(xo)) Vxf2(xo)}, 

vhere 0 ' 0 ~ • (v/gi (r1(x ))) + ((1-v)/~ (f2(x ))). 

Upon ccmcelling and observing that ~ 01 ve see that (24) follmrs 

from (25). 

Lemmas 1 1:11d 2A imply 

Theorem lA: 

An optimal solution of ( 1) is found among the optimal solutions of 

(P a) for some a in the unit interval. More precisely, if et* is 



optimal in 

(2A) Maximize 
a t [O,l] 

l.fhere we define 

if (a) , 

( 3A) H (a) ; Max~um 
x t f (a) 

h( f(x) ), 

tl!en (1) is solved by a.ny :point x t X (Ci*) 

sati sfying h(f(x)) = H (a*). 

We also have 

!:!;_mma 3A: 
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Every point of X(a) is efficient when a s&tisfies 0 <a< 1. Some 

point of X (a) is efficient when a • 0 or 1. 

To k.no~; how to compute H( a) economically, we require the following 

ver"~ iOn of Th. 2. 

'Iheorem 2A: 

A. Let a be fixed in [O,l]. If (P a) has a unique optimal solution 

;(a), then . n (a) .. h ( f( ; · (a))). 

B. H (o) = h(f(x)) 

H(l) = h(f(x)) 

-tor any efficient point x c X (0). 

for any efficient point x e i '1). 

C. Assume that s1(f1(x)) or S2(t2(x)) or both is linear on a line 

segment of X only if it is constant on it. Then for each a 

satisfying 0 <a< 1, we have H(a) • h(t(x)) for any point 

x c i (a). 

D. Let x( a) be any optimal solution tunction for (P a) on [o, 1] 

that is continuous ev~rywhere except possibly for a finite number 

number ot simple discontinuities. Por each point a' ot discontinuity, 



( 3.1A) 

( 3.2A) 

.?!:2?!: 

29 

define ! (a•) and i (a) as the left -hand (unless a• = 0) and 

right-hand (unless a•= 1) limits of x (a) at a•, respectively. 

Then 

1. B (a) = h(f(x(a))) at every point of continuity in [O,l] • 
... 

2. H (0) = h(f(x (o)) ) if 0 i s e point of discom.inuity. 

3. H (1) = h(f(! (o)) ) if 1 is a point of discontinuity. 

4. If a• is a point of di scont inuity satisfying 0 < a• < 1, the~ 

-
Maximum h(f(t ;(a•) + (1-t) i (a•))) and 

t e [O,l] -

Maximum h(g~tg(f(i(a•))) + (1-t) g(f(i(a•))) )). 
t e [O,l] -

The proof of this theor em will not be given in detail here, inasmuch 

as it follows closely that of Th. 2. The key observation i s that 

(P a) has all of th~ properties that (P a) does, if we view g(f) in 

(IS a) as taking the place of f in (P a). Thus Lemmas 4 through 8 

hold with regard to (P a) if their statements are modified by replacing 

everywhere *·superscripts by tildes and f by g(f). To r elat e t he 

results regarding (P a) to h(f(;(a))), it is necessary to observe that 

h(f(x)) : h(g-1(g(f(x)))), where g·l = (gi1, g21
). The (single-valued) 

inverse functions -1 gi exist because the gi are strictly increasing. 

Theorem 3A: 

Assume that h is quasiconcave on F. If i'(a) is an_x optimal solution 

f~ n~tion of (P a) on [01 1], then h(f(i(a))) is quasiconcave on [O,l]. 

Proof: 

Let a1, a0 , and a2 satisfy 0 < a1 < a0 < a 2 ~ :, and l et xi be 

i n i (al), 1 = 0,1,2. If f(x0 ) = f(x1) or f(x0 )= f(x2), then 
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obviously h(f(x0
)) ~ l-1in (h(f(x1)), h(f(x2))}. We shall st.ow that 

this conclusion holds when f(x0
) # f(x1) and f(x0

) ~ f(x2), thereby 

showing that h(f(x(a))) is quasiconcave on [O,l]. 

If 0 < ~ < a0 < 1, 1 0 then x and x are effici ".!nt and by 

Lemma 2 there exist A1, A0 in the unit interval such that 

xi e X*(~i), i = 0,1. It follows from Lemma 6A,vhich implies that 

g(f( x(a))) is monotone in a, the fact that f(x0
) ~ f(x1), the 

strictly increasing nature of g, and a1 < a0
, that Al < A0

• If 

1 a = o, 1 th :::n clearly x e X*( 0). Thus for 0 < ~ < a0 < 1 we 

have the existence of 1 2 ~1 , c A and A satisfying 0 ~ " < ,.. :S 1 such 

i 1 that x eX*(~ ), 1 = 0 1 1. By similar arguments we obtai n tha:\; 

0 2 2 0 2 for 0 < a < a < 1 there exists ~ satisfying X < ~ < 1 

such that x2 c X*(~2). Applying Lemma 91 we find that there exists 

a number t, 0 ~ t ~ 1, such that fi(x0
) ~ tfi(x

1
) + (1-t) fi(x

2
), 

i = 1,2. Hence 

h(f(x0
)) ~ h(t f(x1) + :1-t) f(x2)) 

~ Min (h (f(x1 )), h(f(x2)) }, 

where the first inequality holds because h is increasing ~~1 the 

second because h is quasiconcave. The proof is comp'!ete. 

Theorems 1A1 2A, and 3A can be used in the same manner as were 

Theorems 11 21 and 3 to construct algorithms for solving (1) via (P a). 

The freedom to perform nonlinear scale changes on the ti can be used to 

' 
extend the applicability of the known parametric programming algorithms. 

As an ex!'.:nple, consider the problem 
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(26) Minimize    v    11 q j -f- v0 11    q^1 

x> 0 1    J=1      ij        2j=l     ■' 

subject to Ax < b , 

where the q. .    and    v's are strii-tlv positive.    Problems of thde sort 

arise in redundancy allocation and  target - assignment contexts.    While 

(26) can be approximated as a linearly separable convex program by an 

appropriate change of variables  [ll,  p.   350], we shall indicate how it can 

be solved via parametric linear programming.    By making the obvious 

identifications 

H = f 1 +  f 2 

X = I'x > 0 :  Ax < b}  , 

we see that (26)  is a problem of the form (l).    The obvious scale change 

to apply to the f.     is the logarithmic one:    g.(y)  = - In (-y),   i = 1,2, 

Theorems 1A,   2A,   and 3A    then apply,  and Algorithm 2 can be used to 

solve (l) by parametric linear programming applied to the linear 

sub-problern 

(2?)    Maximize a sV x. (-In q. J + (l-a) .S. x.(-ln q0.) 
x > 0      

J=1 J      lJ        J=1 ^     2j 

subject to Ax < b. 

The stochastic programming model of Kataoka [lO] can be solved by 

a scale-change that leads to the applicability of Algorithm h. 
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